Author Affiliations
Abstract
1 Laser & Fiber Electronics Group, Faculty of Electronics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
2 Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
3 Laboratory of Optical Fiber Technology, Maria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 3, Lublin, Poland
We present an ultrabroadband, high-speed wavelength-swept source based on a self-modulated femtosecond oscillator. Photonic crystal fiber was pumped by a mode-locked Yb:CaF2 laser, resulting in a strong spectral broadening from 485 to 1800 nm. The pump laser cavity could be realigned in order to achieve total mode-locking of the longitudinal and transverse TEM00 and TEM01 electromagnetic modes. This led to spatial oscillations of the output beam, which induced modulation of the coupling efficiency to the fiber. Due to the fact that nonlinear spectral broadening was intensity dependent, this mechanism introduced wavelength sweeping at the fiber output. The sweeping rate could be adjusted between 7 and 21.5 MHz by changing the geometry of the pump cavity. By controlling the ratio of the transverse mode amplitudes, we were able to tune the sweeping bandwidth, eventually covering both the 1300 nm and 1700 nm bioimaging transparency windows. When compared with previously demonstrated wavelength-swept sources, our concept offers much broader tunability and higher speed. Moreover, it does not require an additional intensity modulator.
Photonics Research
2019, 7(2): 02000182
Author Affiliations
Abstract
1 Laser & Fiber Electronics Group, Faculty of Electronics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
2 Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
3 Laboratory of Optical Fiber Technology, Maria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 3, Lublin, Poland
We report an all-fiber, all-polarization maintaining (PM) source of widely tunable (1800–2000 nm) ultrashort pulses based on the amplification of coherent self-frequency-shifted solitons generated in a highly nonlinear fiber pumped with an Er-doped fiber laser. The system delivers sub-100 fs pulses with energies up to 8.6 nJ and is built entirely from PM optical fibers, without any free-space optics. The all-fiber alignment-free design significantly increases the suitability of such a source for field deployments.
Nonlinear optics, fibers Mode-locked lasers Nonlinear optics, fibers 
Photonics Research
2018, 6(5): 05000368
Author Affiliations
Abstract
1 Laser & Fiber Electronics Group, Faculty of Electronics, Wrocław University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
2 Department of Optics and Photonics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
3 Laboratory of Optical Fiber Technology, Maria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 3, Lublin, Poland
We report generation of sub-100 fs pulses tunable from 1700 to 2100 nm via Raman soliton self-frequency shift. The nonlinear shift occurs in a highly nonlinear fiber, which is pumped by an Er-doped fiber laser. The whole system is fully fiberized, without the use of any free-space optics. Thanks to its exceptional simplicity, the setup can be considered as an alternative to mode-locked Tm- and Ho-doped fiber lasers.
Nonlinear optics, fibers Mode-locked lasers Nonlinear optics, fibers Ultrafast processes in fibers 
Photonics Research
2017, 5(3): 03000151

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!